
 

 1 Copyright © 20xx by ASME 

Proceedings of the ASME 2012 11th Biennial Conference On Engineering Systems Design And 
Analysis ESDA2012 July 2-4, 2012, Nantes, France 

ESDA2012-83015 
 
 

DEEP STRUCTURE AND SMART MECHANISMS: 
DESIGNING PERSPICACIOUS SYSTEMS 

 
 
 

 John M. Flach 
Wright State University 

Dayton, OH, USA 

 

 
 

ABSTRACT 
A fundamental challenge in the design of any cognitive 

system is to support productive thinking and efficient control. 
Research shows that human problem solving can be greatly 
enhanced using representations that reflect the deep structure of 
problems. Further, research on human action shows that 
selectively constraining degrees of freedom can improve both 
speed and accuracy of performance. This talk will discuss how 
these two insights from the basic research literature can be 
incorporated into work analysis and interface design to enhance 
performance of cognitive systems. The goal is to design 
interfaces so that the deep structure of the problem is well 
mapped to the opportunities for action. A major challenge is to 
operationalize the basic constructs of deep structure and smart 
mechanism in terms of specific work domains. Examples from 
the medical and aviation domains will be used to illustrate how 
this challenge is being met. 
 

 
 

INTRODUCTION 
Over the last 30 years, there has been a gradual paradigm 

shift in how we frame problems of human system integration. 
The fields of Human Factors (HF), Ergonomics, and Human 
Computer Interaction (HCI) have been conventionally framed 
in terms of human limitations in information processing [1]. 
That is, the focus was on characterizing human limitations 
associated with perception, attention, memory, reasoning, and 
control, so that these limitations could be accommodated in the 
design of human-machine interfaces. In this context, these 
human limitations were often viewed as sources of human 
variability (i.e., human error) that were considered to be a 
major threat to system performance. The variability of the 
human was often seen as a serious ‘weakness’ relative to the 

reliability of modern information technologies. For example, 
Kantowitz and Sorkin [2] wrote:  

Indeed, many human factors analysts believe that minimizing 
human error is the primary goal of any human factors design. 
If people never made errors, there would be little need for a 
science of human factors (p. 30). 

Research framed in the context of this conventional 
Information Processing (IP) paradigm typically was cast in the 
context of an open loop, dyadic semiotic system as illustrated in 
Figure 1A, where the human was treated as a symbol processor. 
That is, the interface was considered to be the 
stimulus/symbol/cause and the decision/action of the human 
was considered to be the response/interpretation/effect. Thus, 
the focus of research was typically to isolate open-loop transfer 
functions (e.g., determine the bandwidth) for the various stages 
of information processing (e.g., encoding, memory, decision 
making). In this context, even apparently dynamical aspects of 
human performance, such as Situation Awareness (SA) were 
typically cast as ‘stages’ in an information processing system 
[3]. 

In the context of the dyadic semiotic system the focus was 
on the relation between the surface structure of the interface 
(i.e., the symbol) and the interpretation of the human symbol 
processor. Research hypotheses in this paradigm were typically 
framed in terms of general surface properties of the interface 
(e.g., intergral versus separable displays), relative to human 
information processing limitations (e.g., parallel versus serial 
processing) and these hypotheses were often tested using 
generic tasks motivated by assumptions about the relevant 
information processes [1]. 

Limitations of this conventional IP/symbol processing 
paradigm became increasingly evident in the context of fault 
diagnosis in the nuclear power domain [4]. In this context, the 
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‘weakness’ of rule-based automation, in the face of 
unanticipated variability associated with a complex process 
became apparent, and it often fell to the human operators to 
discover and solve problems that could not be fully anticipated 
in the design of the systems (e.g., to diagnose faults related to 
failures of the automated control systems). Thus, human 
variability (now viewed as creative problem solving) was 
increasingly valued as a resource for coping with complexity. 
The implication for design was that there was an increasing 
concern to use automation in ways that supported human 
problem solving. Rather than protecting the system against 
human error, the emphasis shifted to how to more fully 
leverage the problem solving expertise of humans for coping 
with complex problems.  
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Figure 1. A comparison of a dyadic (A) and a triadic 
(B) image of the semiotic system for evaluating human 
system integration. 

 
In order to understand creative human problem solving, 

attention shifted from research inspired by the information 
processing paradigm to other paradigms such as Gestalt [5] and 
Ecological [6,7,8] Psychology. These two paradigms focused 
more on the functional dynamics associated with ‘meaning 
processing,’ where meaning was derived from ‘grounding’ 
performance relative to the functional problem being solved. 
This grounding was reflected in constructs such as the 
‘structural features’ of the problems discussed by Wertheimer 
and the ‘affordances’ discussed by Gibson.  

For example, consider Wertheimer’s [5] view of thinking: 

Thinking consists in envisaging, realizing structural features 
and structural requirements; proceeding in accordance with, 
and determined by, these requirements; thereby changing the 

situation in the direction of structural improvements, which 
involves: 

that gaps, trouble-regions, disturbances, superficialities, 
etc. be viewed and dealt with structurally; 
that inner structural relations – fitting or not fitting – be 
sought among such disturbances and the given situation 
as a whole and among its parts; 
that there be operations of structural grouping and 
segregation of centering, etc.; 
that operations be viewed and treated in their structural 
place, role, dynamic meaning, including realizing the 
changes which this involves; 
realizing structural transposability, structural hierarchy, 
and separating structurally peripheral from fundamental 
features – a special case of grouping; 
looking for structural rather than piecemeal truth (p. 235 
– 236). 

Brunswik and Gibson were among those to argue that the 
‘structural relations’ and the ‘fitting’ that Wertheimer was 
concerned about reflected relations between the problem (i.e., 
the ecology or the situation) and the representation of that 
problem. They understood that in order to understand 
productive thinking it was necessary to consider the deep 
structure of the problem being solved, as well as the structure 
of the problem representation (whether internally as awareness 
or externally as an interface).  They realized that the symbol 
processing had to be grounded in the functional practicalities of 
life – that it was not sufficient to understand the dynamics of 
awareness (e.g., information processing), it was necessary to 
consider the dynamics of situations (e.g., ecologies or work 
domains). This theme has been picked up by others and is 
reflected in labels such as situated cognition [9], embodied 
cognition [10]; and evolutionary psychology [11]. The common 
thread among these approaches is the need to include the 
situation constraints as a third component within the semiotic 
system.  

Figure 1B illustrates a triadic semiotic system that includes 
the situation or problem dynamics as an additional intrinsic 
element in the meaning processing system. Although the triadic 
system includes two components that are labeled similarly to 
components in the dyadic system (i.e., Interface & Awareness), 
it is important to recognize that unique properties of these 
elements become salient in the context of the triadic system 
dynamic. That is, the triadic system whole cannot be 
understood as the dyadic system plus the new situation 
component. The triadic system challenges conventional 
assumptions about the role of interface and awareness, as well 
as assumptions about the global dynamics of situation 
awareness [12,13]. 

In the triadic semiotic system, the interface is no longer the 
‘stimulus,’ but rather it becomes the medium through which 
functional constraints of the ecology can be specified. Gibson 
focused on the medium as optical flow. He hypothesized that 
structure within optical flow fields (i.e., optical invariants) 
specified important constraints in the ecology that were 
associated with the control of locomotion [14]. Brunswik [6], 
on the other hand, used his ‘lens model’ to describe the 
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probabilistic relations between the medium (i.e., cues) and 
structures in both the ecology and the perceiver’s beliefs about 
that ecology. Although they disagreed about the details of how 
to describe the constraints in the medium, Brunswik and 
Gibson both realized that understanding the constraints in the 
medium relative to structure in the problem ecology was critical 
to understanding the possibilities for skilled interaction with a 
functional environment. In other words, structure in the 
medium was critical to understanding the information coupling 
between situations and awareness.  

The Awareness component also takes on a different 
character in the triadic semiotic system. The dyadic paradigm 
tended to treat the awareness component as a passive 
communication channel. Although feedback has been 
recognized as an important characteristic of cognitive systems 
[15], models of human information processing and the 
associated experimental paradigms have generally been framed 
using the logic of open loop causality [16]. The triadic 
paradigm, in contrast, suggests an adaptive control system 
metaphor that emphasizes the importance of the closed-loop 
coupling of perception and action in order to meet the 
functional demands of changing ecologies. For example, 
Gibson emphasized the essential role of action (e.g., looking) 
for information pick-up. In fact, optical flow does not exist 
without movement [17]. Gibson [18] introduced the constructs 
of performatory and exploratory action in recognition of the 
fact that action serves both control (e.g., goal satisfaction) and 
observation (e.g., information pick-up) functions.  

The adaptive control metaphor demands that constructs of 
awareness be framed in relation to the functional demands of 
the control problem. As Conant and Ashby observed “there can 
no longer be question about whether the brain models its 
environment: it must ” [19, p. 97]. The key point here is that the 
brain is designed through natural selection to leverage the 
opportunities in terms of information (e.g., optical invariants or 
cues) and in terms of functional action (e.g., affordances). It is 
not a logical, symbol processor, but rather it is a pragmatic 
system designed to solve the practical problems associated with 
surviving in an ecological niche (i.e., it is an adaptive 
regulator). In this regard, understanding the ecological niche, 
the dynamics of situations, provides a particularly important 
window into human awareness. In this context, situation 
awareness shifts from being internal components within an 
information processing element, to become an emergent 
property of the whole triadic semiotic system [12,13]. Situation 
awareness becomes the larger context for understanding both 
situations (e.g., affordances) and awareness (e.g., expertise).  

The labeled arrows in Figure 1B reflect two aspects of the 
overall dynamic of the triadic semiotic: control and 
observation. Control is typically associated with performatory 
action and reflects the organization of behavior to satisfy or 
achieve some purpose or goal. This view was inspired by 
Rosenbluth, Wiener, and Bigelow’s ‘Cybernetic Hypothesis’ 
[20] that suggested the servo-mechanism as a metaphor for 
human behavior. Observation on the other hand reflects the 
perceptual and sensemaking aspects of cognition. The terms in 

Figure 1B were chosen explicitly to reflect Pierce’s [12] 
Abductive model of human reasoning. In this model, 
experience provides the source for hypotheses or beliefs about 
the world. The validity of these hypotheses is then tested 
pragmatically. That is, beliefs that lead to satisfactory outcomes 
are retained, while beliefs that lead to surprises or 
unsatisfactory outcomes are revised to reduce mismatches 
between the beliefs (i.e., internal model of the world) and the 
actual functional consequences. 

It is important to note that the overall semiotic dynamic 
that results when control is coupled with and guided by an 
abductive logic is not consistent with the simple 
servomechanism that inspired early research in cognition [15]. 
As Rasmussen [21] has noted: 

human activity, in a familiar environment will not be goal-
controlled; rather, it will be oriented towards the goal and 
controlled by a set of rules which has proven successful 
previously…. The efficiency of humans in coping with 
complexity is largely due to the availability of a large 
repertoire of different mental representations of the 
environment from which rules to control behavior can be 
generated ad hoc. An analysis of the form of these mental 
models is important to the study of human interaction with 
complex man-made systems. 

In the adaptive control system described by Rasmussen a 
key to skilled performance will be matching the right models 
from the repertoire of mental representations (e.g., heuristics or 
control logic) to the right situations. The key will be to 
generalize appropriately from experience to situations. In other 
words, the capacity for control will depend on the match 
between structure in the heuristic or mental model guiding 
action (i.e., awareness) and the structure of the situation, as 
suggested by Todd and Gigerenzer’s construct of ecological 
rationality [22]. In the triadic semiotic system, the interface 
(medium) becomes critical because the representation in the 
interface will have a critical influence on the generalizations 
that users will make. If the structure of the interface makes the 
functional structure of the situation or problem salient, then 
users are expected to make smart generalizations – to think 
productively. However, if the structure at the interface masks 
critical properties of the situation, then surprise and confusion 
are likely to be the result.  

This leads to the fundamental premise guiding Ecological 
Interface Design (EID): that interfaces should be designed to 
reveal the functional structure (i.e., the deep structure) of the 
problem domain – so that operators will apply appropriate 
generalizations and heuristics for coping with the problem 
complexity [23]. It is not sufficient to simply consider human 
information processing. In addition, it becomes important to 
ground the information processes in the problem domain. Thus, 
the ‘stimulus’ is no longer the interface. Rather, the interface 
becomes the medium for representing the domain problem – 
which is the ultimate stimulus or ground for meaning 
processing. The actions/decisions/rationality of the human must 
be evaluated relative to the deep structure of the domain 
problem.  



 

 4 Copyright © 20xx by ASME 

Note that human information processing limitations 
(constraints on awareness) remain a concern. However, these 
limitations are now framed relative to the deep structure of the 
work domain (constraints on situations). Thus, situation 
awareness is viewed not in terms of internal processing stages, 
but rather as an emergent property reflecting the fit between 
internal awareness (e.g., mental models or heuristics) and the 
functional situation dynamics. Also, note that in this context the 
validity of a heuristic is no longer gauged relative to context 
free logical prescriptions (e.g., deductive logic), but rather it is 
gauged relative to the pragmatic consequences (i.e., does it 
generally lead to satisfactory solutions). 

Thus, the unique aspect of the EID approach relative to 
more classical user-centered design approaches is to treat the 
use-context (i.e., the work domain) as an intrinsic element of 
the semiotic system, rather than as an extrinsic environment 
surrounding a dyadic symbol processing system. In the 
following section, the construct of deep structure of a work 
domain will be explored and illustrated. Understanding what 
we mean by deep structure is essential to appreciating the EID 
approach. Following the discussion of deep structure, the 
implications for skilled control will be discussed in relation to 
the constructs of smart mechanism and coordinative structure. 
This will help to illustrate how representations of the deep 
structure of a work domain can be leveraged to reduce the 
computational demands of a problem.  

DEEP STRUCTURE 
In their book on human problem solving, Newell and 

Simon [24] write:  

it would be perfectly possible for the psychologist to follow 
the route of the economist: to construct a theory of concept 
formation that depended on no characteristic of the subject 
other than his being motivated to perform well. It would be a 
theory of how perfectly rational man would behave in that 
task environment – hence, not a psychological theory but a 
theory of the structure of the task environment. (p. 54) 

In searching for the ‘deep structure’ of a problem (or in 
Wertheimer’s terms the ‘structural truths’) we are searching for 
a ‘theory of the structure of the task environment.’  We are 
searching for an understanding of the rationality of the problem 
that is independent from any agent (either human or 
automation) that might need to solve it. For the puzzles and 
games studied by early researchers in AI, this deep 
understanding was typically achieved through ‘state space’ 
representations that showed all possible paths between an initial 
start state and a final goal state. This includes the states and the 
possible transitions from one state to another (i.e., operations or 
legal moves). The state space description provided a ground 
against which alternative solutions could be evaluated. For 
example, it allowed the identification of ‘optimal’ paths, in 
terms of minimizing the number of steps or minimizing costs 
associated with the various operations that needed to be applied 
in order to move from one state to another.  

For simple games (e.g., tic-tac-toe) it is fairly easy to 
describe the state space. However, as problems become more 
complex (e.g., chess) it becomes increasingly difficult to fully 
describe the state space. Describing the state space becomes 
particularly difficult when we move from closed systems (e.g., 
games like tic-tac-toe or chess) to open systems (e.g., robots or 
complex work domains). An open system is one where the state 
depends, in part, on the environment or situation. For example, 
designing an autonomous robot for a controlled laboratory 
environment is much simpler than designing a robot that can be 
successful in a wide range of natural environments. As a system 
becomes more and more open to interactions with the larger 
environment, the complexity of the state space increases 
dramatically and it becomes increasingly difficult to fully 
enumerate the space. Thus, it becomes increasingly important 
to have a ‘theory of the task’ in order to differentiate the 
‘piecemeal truths’ from the ‘structural truths’ of the problem 
space, in order to support productive thinking.  

As Rasmussen [24] considered how best to support fault 
diagnosis in nuclear power plants, he realized that a ‘theory of 
the task’ was essential. Rasmussen realized that it was 
impossible to answer the question of what information was 
needed to diagnose a fault without a deep understanding of the 
nuclear power process. It became necessary to understand the 
‘states’ of the plant and the ‘operators’ for changing those 
states. Rasmussen realized that understanding the dynamics of 
the nuclear power process was essential for appreciating the 
rationality of experts (e.g., why a particular strategy was 
preferred) and it was essential for making decisions about what 
information to display and how to organize it to best support 
those experts.  

Rasmussen [25] introduced the Abstraction Hierarchy as a 
framework for building a theory of a functional task. The 
Abstraction Hierarchy includes five nested levels of means-
ends constraints that reflected important general categories of 
task structure or constraint. I and others have written 
extensively about the Abstraction Hierarchy and how we think 
that it can help us to understand the deep structure of tasks 
[13,26,27,28,29]. However, in this article, I would like to avoid 
the jargon associated with the Abstraction Hierarchy and, 
instead, I would like to illustrate the concept of deep structure 
using concrete examples from our experiences in the medical 
and aviation domains.  

Recently, we have been exploring the management of 
information in family medicine in relation to potential designs 
for electronic medical record systems (EMRs) [30,31,32,33,34]. 
In the course of this work, we have begun to focus on how the 
information from medical tests (e.g., blood analysis) can be 
used for decisions about treatment and care (e.g., relative to 
cardiac health). It soon became apparent that if we wanted to 
understand the rationality of medical decisions and if we 
wanted to provide appropriate information support, then we had 
to begin to learn about the nature of health. We had to begin to 
explore the relation between the data from the blood analysis 
(e.g., cholesterol levels) and the state of the patient’s health 
(e.g., risk of cardiovascular disease – CVD risk). Thus, we 
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began by asking domain experts about what variables do they 
attend to when making decisions about treating cardiovascular 
disease and we began to explore the medical literature for 
models of CVD risk.  

Note that the goal of this search was not to identify the 
mental model of any particular physician. Rather, the goal was 
to find the best model of CVD risk. In other words, we were 
looking for a theory of the tasks of diagnosing and treating 
CVD. This search led us to regression models of CVD risk that 
were based on longitudinal studies of cardiac health [35,36,37]. 
The variables and weights in these models provided an 
empirical basis for relating the ‘data’ from blood analysis to the 
state of the patient with regard to CVD health (i.e., risk of 
cardiac event within next ten years), and it also provided an 
important link to the choice of treatment alternatives (e.g., 
whether to prescribe drug treatments).  

Note that the domain experts were very helpful in guiding 
us to the right sources in the medical literature. However, 
although they were aware of the empirical models, they did not 
know the details of the models and could not articulate the logic 
of the models in a way to suggest innovative display solutions. 
At this point, we don’t want to speculate about whether the 
domain experts’ judgments about CVD risk would be in line 
with the predictions of the regression models. However, to the 
extent that they were consistent, we feel sure that much of this 
consistency would be based on tacit knowledge. That is, these 
judgments are based on a mental model that cannot be fully 
articulated. Thus, it would be difficult to discover this model 
with a work domain analysis based only on observations and 
interviews with practicing physicians. 

The point for this paper is that the empirical regression 
models of CVD risk in the medical literature became critical to 
the theory of the task that has guided our choices about what 
information to include in a graphical display and about how to 
organize that information [33].  These regression models 
became our guide for finding ‘meaning’ in the data. They 
provided the theoretical basis for hypothesizing ‘structural 
truths’ that might support productive thinking. They have been 
important guides to our theory of the deep structure of the 
medical decision problem. 

Another example comes from work in the aviation domain. 
In exploring alternative displays for landing an aircraft, we 
discovered that pilots used different strategies for landing on 
normal runways, than they used for landing on short fields 
(e.g., aircraft carriers). Although most of the pilots that we 
interviewed were aware of the different strategies, none could 
clearly articulate why one strategy (stick to speed) was best for 
normal runways and why the other strategy (throttle to speed) 
was best for short fields. The pilots had the procedural 
knowledge, but they did not have a deep understanding of the 
theory that motivated the different strategies. 

As we explored further, we were led to more general 
questions about the functions of the throttle and stick relative to 
controlling speed and altitude. Note that either control can be 
used to regulate speed. In the stick to speed strategy, the pilot 
sets his throttle, and then flies using his stick to maintain a 

constant airspeed. In the throttle to speed strategy, the pilot sets 
his stick, and then flies using his throttle to maintain a constant 
airspeed.  

Eventually, we learned that the functions of the controls 
could be more clearly differentiated in terms of energy 
constructs. We learned that the throttle determined the change 
in total energy available (i.e., the sum of potential and kinetic 
energy). When the throttle was increased, more total energy 
was available (i.e., the aircraft might either go faster, or higher, 
or both); when the throttle was decreased less total energy was 
available. We learned that the stick had essentially no impact 
on total energy, but that it determined the balance between 
potential (altitude) and kinetic (airspeed) energy. In other 
words, the stick position had an impact on whether energy was 
realized as changes in altitude or speed or both.  

In this case, understanding the controls in terms of energy 
concepts provided a deeper understanding of the functions. This 
led to the development of a Total Energy Reference Path 
(TERP) display that when integrated with a tunnel in the sky 
display of glide path provides a graphical display that allows a 
much clearer differentiation between the functions of the 
throttle and the stick for controlling landing [38]. In the 
aviation domain, learning about the energy relations underlying 
the aerodynamics provided a deeper understanding of the task.  

The construct of ‘deep structure’ refers to the need to 
develop a theory of a problem domain, situation, or ecology. 
This theory provides a basis for choosing what variables or 
what dimensions are important for relating the state of the 
problem to the functional goals. This theory provides a basis for 
differentiating whether different strategies will work and for 
evaluating the efficiency of various strategies. Thus, it also 
provides a ground against which the rationality of domain 
experts can better be appreciated, both in terms of the structural 
truths guiding experts and the limits or bounds of the heuristics 
guiding the experts.  

Most importantly, however, a theory of the deep structure 
of a task can be a source of inspiration for display innovations 
that enhance expertise. That is, the theory of the deep structure 
of a problem domain can suggest ways to better organize 
information so that experts can ‘see’ structural truths that were 
invisible on conventional interfaces. A theory of the deep 
structure of a problem can guide the design of representations 
that shape the mental models of humans to better fit the 
functional demands of the problem. Thus, leading to more 
productive thinking. 

SMART MECHANISMS 
No matter how good our theory of the task or situation is 

the ultimate success of any control solution will ultimately be 
constrained by the information processing capacity of the 
control agent. For humans, we know that this capacity is 
severely limited. In fact, even for automated control systems 
the capacity is often quite limited relative to the complexity and 
dynamic demands of most work domains. It is important to 
appreciate that the issue is not simply the capacity of working 
memory, but that the information processing rate is also a 
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function of the time it takes to access information. For example, 
in the case of sepsis with pre-mature infants, the time it takes to 
do the tests needed to diagnose the problem may exceed the 
critical time for effective intervention [39]. If the clinician 
waits for the lab results to confirm a diagnosis – the treatment 
will be too late to be effective. 

For most complex situations, there is rarely enough time to 
collect and integrate all the information that might be relevant 
to a decision or control action. In dynamic problem domains, a 
controller that tries to take all the information into account 
before making a decision or taking an action will almost always 
be too late to be effective. Thus, in order to cope with complex 
problems, there is a requirement to parse or reduce the 
complexity in order to fit with both the internal (e.g., working 
memory) and external (e.g., limited window of opportunity) 
information processing limitations.  

In fact, the strategies for landing described above are 
examples of how smart pilots reduce the complexity of the 
landing process to improve controllability. By fixing the 
throttle when flying a normal approach, the pilot reduces the 
complexity associated with interactions between the throttle 
and stick, so that attention can be focused on the stick-speed 
relation. Note that this only works if the throttle is set at the 
correct position (it is not arbitrary where the throttle is set). But 
if the throttle is set correctly, then the pilot can concentrate his 
attention on the stick control and will be able to achieve a very 
satisfactory solution to the problem of landing on a normal 
airfield.  

In effect, the pilot behaves like one mechanism when 
landing on normal airfields (locking out the throttle and using 
the stick as the primary control), and he acts like a very 
different mechanism when landing on short fields (locking out 
the stick and using the throttle as the primary control). These 
are smart mechanisms to the extent that these strategies lead to 
satisfying solutions to the different situations. In each situation, 
the complexities associated with interactions of stick and 
throttle are reduced. However, the complexities are reduced in 
different ways to fit the different demands of the two situations.  

The idea that a complex system might reduce complexity 
by locking out degrees of freedom to reduce the information 
processing demands was first suggested from research on 
skilled motor control [40]. Bernstein realized that controlling 
complex motor skills (e.g., throwing a baseball) could involve 
many degrees of freedom that potentially exceeded the 
information processing capacity of any centralized control 
system. He called this the degrees of freedom problem. 
However, he observed that skilled humans simplified the 
control demands by constraining different degrees of freedom 
to meet the demands of different situations (e.g., hitting a golf 
ball versus hitting a baseball). In other words, the skilled 
human solved the degrees of freedom problem by becoming 
different kinds of coordinative structures for different kinds of 
motor tasks. Thus, a coordinative structure is a heuristic 
solution fit to the demands of a specific task.  

Inspired by Bernstein’s intuitions, Runeson [41] contrasted 
the style of control in early robotics with that observed in 

biological systems. Whereas, early work in robotics tended to 
constrain movements around three orthogonal spatial axes 
(resulting in stereotypical ‘robotic’ motion and complex 
computations), biological systems tended to chose different 
axes for different tasks that better leveraged natural task 
constraints (resulting in smoother more natural motions and 
simpler computations). Runeson referred to solutions organized 
around the general dimensions most convenient for the 
engineers as ‘rote mechanisms.’ He referred to solutions 
organized around the special dimensions of specific task 
situations as ‘smart mechanisms.’ Thus, a smart mechanism 
reflects a solution that minimizes computational demands while 
satisfying the demands of the task. 

In behaving as smart mechanisms, animals leverage natural 
constraints (e.g., the body’s geometry, gravity, laws of motion) 
to reduce the control demands. For example, the trajectory of a 
limb can be constrained by locking a joint or by simultaneously 
adjusting multiple joints. The former strategy entails high 
computational demands as each joint and the interactions must 
be taken into account and coordinated precisely to yield a 
desired trajectory. The later strategy takes the locked joints out 
of the equation, greatly simplifying the computational demands.  

The ‘aiming off’ strategy used by orienteers is another 
example of a smart mechanism. In orienteering, people using a 
compass and topographical map race from landmark to 
landmark based on directions obtained at each landmark. For 
example, the next landmark might be a bridge across a river 
that is a quarter mile through the woods northeast of the current 
location. Rather, than setting their course directly for the 
bridge, experienced orienteers will typically ‘aim off.’ That is, 
they set their course toward a point on the river that is closer 
than the bridge. On the one hand, this requires them to travel a 
bit farther than if they took the most direct path to the bridge, 
so it is sub-optimal relative to the shortest path. On the other 
hand, it is a computationally simple and robust strategy relative 
to the demands of following the compass without error to a 
precise point.  

In navigating on a direct path to the bridge, there is a 
significant probability that due to errors along the route the 
orienteer will miss the bridge. Now when she sees the river she 
must guess which direction to follow the river (and how long to 
go before deciding to reverse directions). However, by aiming 
off, even if there have been errors along the route, the orienteer 
will know which way to follow the river to get to the bridge. In 
essence, with the aiming off strategy, the orienteer leverages 
the boundary constraint provided by the river to reduce the 
computational demands of locating the bridge. The position of 
the bridge is specified by the river, rather than by a series of 
compass computations. Thus, the aiming off strategy is an 
example of a smart mechanism.  

In essence, a smart mechanism is a heuristic in the most 
positive sense of that word. It is a means to leverage local 
constraints of a problem to simplify the processing demands. It 
is a short cut. However, in leveraging local constraints, 
heuristics are necessarily bounded. They work only when the 
local constraints are present. In this case, rationality is bounded, 
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but not due to internal processing constraints. It is bounded by 
the dynamics of the situation (i.e., it is situated) [42]. 

This is another reason that a deep theory of a problem is 
essential to designing effective representations. The deep 
theory helps to identify natural task constraints (e.g., energy 
balance relations) that can be leveraged to reduce the 
computational demands. A good representation is one that 
makes these constraints salient to the control agent in terms of 
salient patterns in the display. These patterns then effectively 
integrate information into meaningful chunks, helping to assure 
that the demands of the problem do not exceed the information 
processing capabilities of the human agents and helping the 
human to see both the value and the bounds of the local 
heuristics.  

Note that the goal of simplifying or reducing the 
information processing demands is shared by both conventional 
approaches and the EID approach to display design. However, 
the key difference is that with the EID approach, the 
development of a theory of the task ecology becomes a guide to 
help to avoid the potential problem of trivializing a complex 
problem. The attention to the deep structure of the domain is 
motivated by the fear that if simplification is only guided by a 
focus on human information processing limitations, there can 
be a significant danger of reducing the complexity in a way that 
leads to brittle trivializations, rather than elegant solutions.  

PERSPICACIOUS SYSTEMS 
The adjective ‘perspicacious’ is defined as ‘of acute mental 

vision or discernment.’ This is an excellent description of the 
ultimate design goal for cognitive systems engineering. The 
goal is to design human-machine systems that have acute 
mental vision or discernment. The goal is to provide the 
decision support to doctors, pilots, and other people wresting 
with complex problems, so that they can be more perspicacious. 
To achieve this goal, we have to respect the limited capacity of 
human information processors. But this is not enough. In 
addition, we must appreciate the structural truths of the 
problem domains and situations that people are facing. In order 
to design effective representations for treating and diagnosing 
CVD, we must understand the deep structure of cardiovascular 
health. In order to design effective representations for piloting 
aircraft, we must understand the deep structure of 
aerodynamics. Thus, we must expand our image of the semiotic 
system to include the domain constraints as an intrinsic 
component of the system. 

In designing interfaces for complex work domains, it is not 
sufficient to match the mental models of current experts. 
Rather, our challenge is to shape the mental models of experts 
so that they are more consistent with the strongest available 
theories and models of the problem domain.  In medicine, this 
means to help doctors to better realize the promise of evidence-
based practice, where their decisions are made in the context of 
the best empirical models from medical science. To do this, the 
data must be presented in a way that makes the relations to the 
medical models salient [33]. In aviation, this means to help 

pilots to go beyond procedural knowledge to better appreciate 
the physical aerodynamic principles of flight [37]. 

In this context, the interface is the medium for shaping 
alternative mental representations. Today’s information and 
display technologies offer unparalleled opportunities to build 
alternative display representations. The challenge will be 
whether we can utilize the power of these technologies to make 
the critical variables salient and to organize them so that 
patterns that are produced illustrate constraints in the problem 
domain that can be leveraged against the complexity.  The 
patterns have to correspond with deep structure in the domain 
and they have to be coherent within the perceptual capacities of 
the human agents.  

Note that the goal here is slightly different than the goals 
for scientific visualization [43]. For scientific visualization the 
goal is to discover new patterns that challenge or extend current 
theories or knowledge. However, in designing for work 
domains, the goal it to build patterns that are guided by existing 
scientific theories. Thus, the goal is to bias doctors to make 
choices that reflect the best current medical theories – not to 
discover new theories. The goal is to bias pilots to make 
choices that reflect the best current aeronautical theories. 
Scientific visualization is about going from patterns in data to 
generate new theories. However, ecological interface design is 
about going from existing theories to generate new patterns to 
support practical decision-making and control. That is, to 
engineer the displays so that the patterns that result reflect the 
best existing theories of the domains. In the medical context, 
the goal is to help a physician to see the data for a specific 
patient relative to the best empirical models available from 
medical science. Thus, the patterns in the display should reflect 
the constraints in the medical models. 

In this context, the focus shifts from the human as a source 
of error, to the human as a source for productive thinking. The 
human’s capacity to recognize patterns becomes a major 
resource for dealing with problem complexity. The key is to 
make sure that the patterns perceived bias the human toward 
choosing the right heuristics for the situations; that they bias the 
human toward behaving as a smart mechanism.  

In sum, the goal of cognitive systems engineering is to 
increase perspicacity. To do this requires both an appreciation 
of the constraints on human awareness and an appreciation of 
constraints within the problem ecology. The goal is to make 
sure that human discernment is shaped by the best existing 
theories of the deep structure in the problem ecology.  
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